

5 kW

- Output power:  
5 kW in CW mode
- Anode voltage: 7.2 kV
- Anode dissipation: 1.5 kW
- Frequency up to 160 MHz



# INDUSTRIAL RF HEATING



ITL 2-1

**T**he ITL 2-1 is a RF power triode designed specifically for industrial applications.

This tube uses a coaxial design and metal-ceramic technology. This triode is designed to operate in CW mode. For operation in pulse mode, the

parameters depend on each equipment characteristics. Contact us for specific information.

The ITL 2-1 is an air cooled triode.

This product is designed, developed and manufactured at an ISO 9001 registered production site.

## Electrical characteristics

|                                      |                    |              |
|--------------------------------------|--------------------|--------------|
| Filament                             | thoriated tungsten |              |
| Filament voltage (+ 5 %, - 10 %) (1) | 6.3                | V            |
| Filament current                     | 35                 | A            |
| Surge current                        | 125                | A max.       |
| Cold resistance                      | 22                 | mΩ           |
| Capacitances:                        |                    |              |
| • grid-anode                         | 14                 | pF           |
| • grid-cathode                       | 17                 | pF           |
| • cathode-anode (2)                  | 0.5                | pF           |
| Amplification factor                 | 21                 | approx.      |
| Transconductance (Va: 4 kV, Ia: 1 A) | 10                 | mA/V approx. |

## Mechanical characteristics

|                    |                            |            |
|--------------------|----------------------------|------------|
| Operating position | vertical, anode up or down |            |
| Weight             | 1.1                        | kg approx. |
| Dimensions         | see outline drawing        |            |

## Maximum ratings

|                                                 |         |     |
|-------------------------------------------------|---------|-----|
| Frequency (3)                                   | 160     | MHz |
| Anode voltage:                                  |         |     |
| • up to 85 MHz                                  | 7.2     | kV  |
| • from 85 to 160 MHz                            | 6       | kV  |
| Control grid voltage                            | - 1 000 | V   |
| Anode current                                   | 1.2     | A   |
| Control grid current:                           |         |     |
| • at full load                                  | 0.28    | A   |
| • at no load                                    | 0.4     | A   |
| Peak cathode current                            | 7.5     | A   |
| Anode dissipation, inlet air temperature = 45°C | 1.5     | kW  |
| Grid dissipation:                               |         |     |
| • up to 85 MHz                                  | 130     | W   |
| • from 85 to 160 MHz                            | 100     | W   |
| Grid resistance (tube non conducting)           | 10      | KΩ  |

(1) At frequencies above 50 MHz, the filament voltage is reduced so that the ratio of filament voltage to current becomes the same as that without an anode voltage.

(2) Measured with a 40 x 40 cm shielding plate attached to the grid plate.

(3) Limited conditions above 60 MHz. Please consult Thales Electron Devices.

## Cooling

|                                           |            |                     |      |
|-------------------------------------------|------------|---------------------|------|
| Anode cooling                             | forced air |                     |      |
| Inlet air temperature                     | 45         | °C                  | max. |
| Cooling air flow                          | 1          | m <sup>3</sup> /min | min. |
| Temperature at any point on tube envelope | 220        | °C                  | max. |

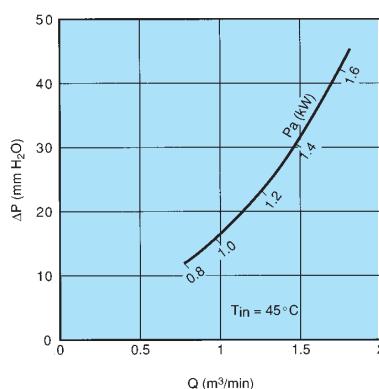
## Typical operation (4)

| Examples              | Class C RF oscillator for industrial applications |       |     |
|-----------------------|---------------------------------------------------|-------|-----|
|                       | 1                                                 | 2     |     |
| Frequency             | 30                                                | 30    | MHz |
| Anode voltage         | 6                                                 | 5     | kV  |
| Grid bias             | - 470                                             | - 420 | V   |
| Grid voltage          | 790                                               | 760   | V   |
| Anode current         | 1.1                                               | 1.1   | A   |
| Grid current, on load | 0.24                                              | 0.27  | A   |
| Anode input power     | 6.6                                               | 5.5   | kW  |
| Anode output power    | 5.0                                               | 4.1   | kW  |
| Anode dissipation     | 1.5                                               | 1.2   | kW  |
| Grid dissipation      | 65                                                | 77    | W   |
| Grid resistance       | 1 900                                             | 1 500 | Ω   |
| Feedback ratio        | 14.6                                              | 16.6  | %   |
| Oscillator efficiency | 75                                                | 75    | %   |

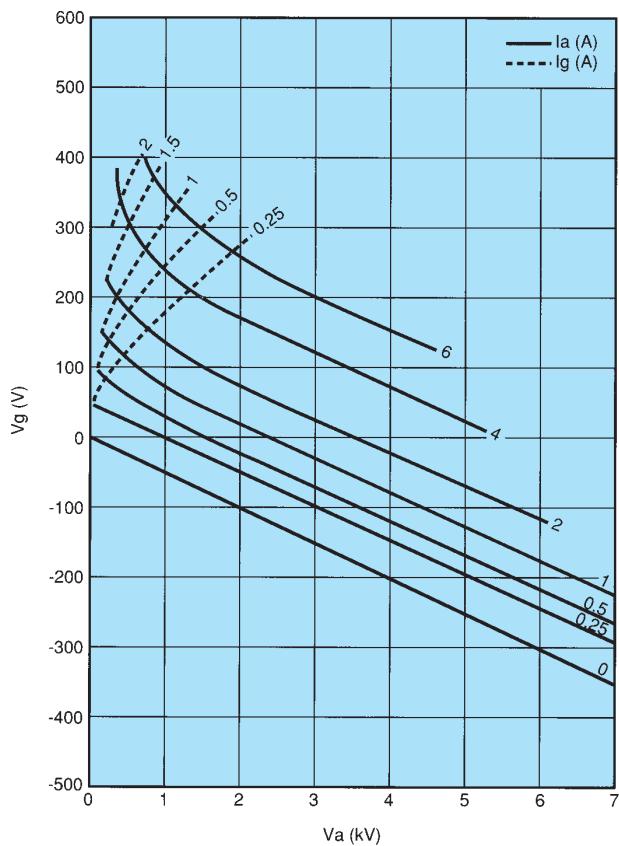
(4) Operation with higher frequencies on request.

## Cooling curve

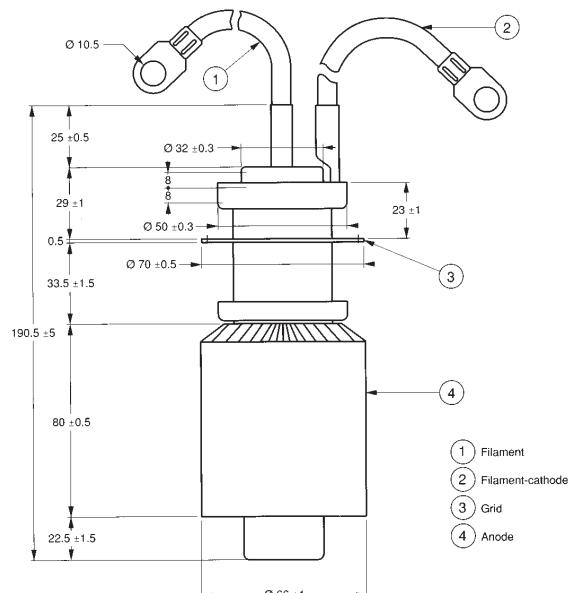
The required flow rates and pressures drop may be read off the cooling curve.


This is valid for both air-flow directions.

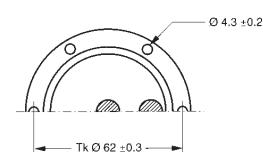
$P_a$ : anode dissipation


$\Delta P$ : pressure drop across the cooler fins

$q$ : air flow rate


$T_{in}$ : inlet air temperature




Constant current characteristics



Outline drawing (dimensions in mm)



Top view (dimensions in mm)

